Neurocritical Care

8th March 2016 Tuesday
Management of Severe TBI (from Brain Trauma Foundation guidelines of 2007 and DECRA Trial)

• Primary survey and airway protection
 • ATLS (EMST) Primary Survey: Airway, Breathing, Circulation, Disability and Exposure— the airway to be kept clear and unobstructed
 • RSI and intubation (eg thiopentone, suxamethonium +/- fentanyl). Sedation as appropriate. Neuromuscular blocker until stable and imaging completed

• Monitor ETCO2
 • Keep normocarbia PaCO2 36-40mmHg
 • All ventilated head injury patients should have continuous capnography
 • Keep well oxygenated with PaO2 > 90mmHg and SpO2 >95%

• Early non contrast CT Brain

• Maintain CPP and prevent hypotension
 • All patients should have arterial and CVC (arterial pressure and ICP zero point: at external auditory meatus)
 • First, volume resuscitation to achieve euvoalaemia→ then noradrenaline to maintain MAP 80mmHg when ICP is unknown
 • Once ICP monitoring present→ fluid and noradrenaline, to aim CPP 60mmHg

• Monitor ICP
 • Ventriculostomy and EVD preferred to allow for therapeutic CSF drainage
• Provide early nutrition via OGT/NGT
 • Exclude anterior base of skull fracture first before NGT insertion
 • Enteral feeding as soon as any urgent surgery completed
 • Aim to provide full caloric requirements by day 7 post injury

• Maximise venous drainage from head
 • Nurse 30 degrees head up unless haemodynamically unstable, or need large doses of noradrenaline, or prevented by unstable spinal or pelvic injuries
 • If unable to nurse 30 degrees head up, tilt bed feet down, patient supine
 • Secure ETT with brown tape to chin or lips, avoid neck compression
 • Remove cervical collars and use sandbags if necessary

• Clear the spine
 • ALL cervical/thoracic/lumbar spine imaging should be completed within 24h of injury
 • A full CT neck at the same time of first CT brain
 • Hard collars to be removed within 4h and either changed to a Philadelphia collar or preferably sandbags, if spine cannot be cleared.
 • If lateral cervical spine Xray and CT neck are reported normal, then all collars can be removed
• Fluid management
 • Isotonic crystalloid (generally 0.9% saline unless significantly hyperchloremic, or Plasmalyte) to maintain serum

• Keep normothermic
 • Kept 37°C with forced air warming or cooling, and paracetamol. Intravascular cooling to be considered if other methods are ineffective.

• Prevent stress ulcers

• Assess for Anticonvulsant Requirement
 • Only those who already had seizure should be loaded with phenytoin 15mg/kg IV and prescribed 150mg phenytoin IV BD for 7 days.

• Prevent DVT
 • Sequential calf compressors to be used routinely
 • Add heparin 5000 units BD subcut if no intracerebral bleeding or > 48h after surgical haemostasis

• Control BSL
 • Maintain BSL below 10mmol/l with insulin infusion if necessary (start insulin if BSL >10, then maintain BSL between 8-10mmol/l)
What if ICP goes up?

- Deepen sedation
 - Recheck basics including ventilation (including CO2 and oxygenation) and monitoring system (including ICP waveform)
- Neuromuscular blockade
 - Bolus 10mg cisatracurium or equivalent. If ICP responds, then deepen sedation.
- CSF drainage
 - If ICP >20mmHg, drain CSF (drain set 5cm above auditory meatus) for 5minutes then monitor for 10 minutes. Repeat as necessary.
- Consider osmotherapy
 - Only used to buy time
 - Contraindicated if serum osmolality >315mosm/kg. Either 7.5% hypertonic saline (50-100ml boluses) or mannitol 20% (100ml) can be used.
 - Greater diuretic effect with mannitol but more prolonged effect with hypertonic saline
- Manual hyperventilation
 - Only used to buy time in life-threatening emergency, not routinely used for high ICP
- If ICP remains >20mmHg for 15minutes despite the above treatment:
 - Recheck monitoring system. Does the ICP monitor show a normal waveform?
 - Notify neurosurgeon and intensivist
Second Line Treatment for Persistent Intracranial Hypertension

- Further increase sedation
 - Does a bolus of 250mcg of fentanyl make any difference

- Optimise fluids
 - If fluid balance > 2litres positive, consider frusemide IV. If serum Na < 150mmol/l give 7.5% hypertonic saline bolus 50-100ml

- Open EVD
 - To continuous drainage (still measure ICP regularly as well)

- Mild hypothermia
 - Cool to between 36.5-37, but don’t allow temperature below 36.

- Neuromuscular blockade
 - Bolus as above, if required, infuse neat cisatracurium at 0.05-0.15mg/kg/h.
 - Aim train of Four ¼ at the ulnar nerve at the wrist if relaxant infusion used

- Thiopentone 2mg/kg boluses
 - If necessary, move on to infusion 100mg/h and increase to achieve burst suppression on EEG.
 - Bedside EEG monitoring mandatory if thiopentone infusion used.
 - BIS acceptable substitute if we ignore number and look at waveform from the frontal EEG and the suppression ratio
 - Back off to minimum effective dose when burst suppression has been achieved for 20min, cease infusion when ICP controlled for 24h.

- Consider late decompressive craniectomy in selected cases
Management of aneurysmal SAH

- Guidelines here apply to NON-TRAUMA patients with spontaneous SAH bleed on CT, or with other evidence of SAH (eg xanthochromia on LP)
- Patients with traumatic SAH → Managed according to severe TBI guidelines
- Management different depending on whether aneurysm is secured
 - Risk of catastrophic re-bleed ~8% in the first 48h and then 1% per day thereafter, so usual plan is to secure aneurysm within 28h of presentation.
 - Reasonable to defer surgery in poor grade patients until there is evidence of neurological improvement, and in patients who present late with established vasospasm until the spasm has resolved
- Vasospasm causing delayed cerebral ischaemia and hydrocephalus are major complications after aneurysms secured
 - Risk of vasospasm (low, moderate or high risk) relate to:
 - The presenting grade
 - The overall blood load (Fisher score), and
 - The anatomy of the bleed in patient
ICU Admission and Discharge Criteria

• Under usual circumstances, all acute SAH patients admitted to ICU
• Occasionally reasonable to admit low risk Grade 1 and Grade 2 SAH patient, and those with an unclear diagnosis, to neurosurgical ward after discussion with consultant neurosurgeon.
• All patients remain in ICU for at least 48h after securing aneurysm
• High risk patients remain in ICU until the peak incidence of vasospasm has passed (7 days) and the patient is stable.
• On admission, clearly document:
 • Grade (Hunt and Hess or WFNS)
 • Fisher score
 • Vasospasm score
• Discharge criteria:
 • At least 48h post securing aneurysm and no further planned procedure
 • No significant neurological changes for at least 24h
 • Past peak incidence of vasospasm in high risk patients
 • Stable off ventilation or catecholamines for at least 24h
 • Not dependent on CNS drainage if a ventriculostomy is present
Initial Investigation and Imaging

• All non-trauma patients with free subarachnoid blood on initial CT, should have CT angiogram circle of Willis study done at same time

• Most patients will require DSA, generally within 24h of presentation, to guide subsequent therapy, unless CT Angio sufficiently clear for surgical decision-making

• In poor grade patients who present deeply unconscious → reasonable to defer angiogram while awaiting evidence of neurological improvement.
 • Generally need early ventriculostomy to prevent development of obstructive hydrocephalus and brainstem herniation

• All SAH should have daily transcranial dopplers during weekdays
 • Large artery vasospasm often present of mean blood flow velocities are > 200cm/s and/or MCA/ICA ratio >6
Basic Resus and ICU management of Unconscious SAH patient

- Perform a Primary Survey and Protect airway
- Monitor ETCO2
- Obtain brain imaging
- Monitor ICP if necessary
- Maintain euvoalaemia and adequate BP
 - Fluid management: isotonic crystalloid (0.9% saline or Plasmalyte) is used to maintain clinical euvoalaemia (generally 3L over 24h)
 - Modest BP elevations (MAP <110mmHg and systolic BP <160mmHg) not thought to be associated with re-bleeding and do not need therapy.
 - Hypotension need treatment (pre-morbid BP should be used to determine on target)
 - CPP targets have not been validated after SAH and should not be extrapolated from traumatic brain injury literature.
 - INTERACT-2: target sys BP <140mmHg prior to securing aneurysm
- Early nutrition
- Maximise venous drainage from head
- Keep normothermia
- Prevent bleeding from stress ulcers
- Prevent DVT
- Control BSL
- Maintain Hb above 80-100g/L
 - Threshold for pRBC is 80-100g/L, rather than standard 70g/L based on TRICC trial
Neurogenic pulmonary oedema

• Any respiratory compromise that accompanies an acute neurologic insult that cannot be explained by co-existing cardiac or pulmonary derangement.
• Up to 23% of SAH patients get some sort of pulmonary oedema with 2-8% attributable to neurogenic pulmonary oedema (mortality rate up to 50%)
• Early onset (minutes to hours) vs delayed onset (by 12-24h post-bleed)
• Pathophysiology: sympathetic surge → pulmonary venoconstriction + rise in cytokine-driven capillary permeability → extravascular lung water and impaired oxygenation
• Treatment:
 • Supportive
 • Reduce ICP
 • Maintain euvolaemia
 • Lung protective measures: Low tidal volume, PEEP, titration of Fio2 to maintain SaO2
Stress Cardiomyopathy

- ECG changes (ST and T wave changes, QT prolongation and U waves)
- Ventricular and supraventricular arrhythmias
- Troponin elevation
- Myocardial dysfunction in absence of coronary vasospasm
- Incidence of arrhythmia 35% (~5% life threatening)
- Incidence of left ventricular wall motion abnormalities 22% with troponin elevation in 68% of patients post-bleed.
- Tako-tsubo cardiomyopathy (transient wall motion abnormality of LV-- apex of LV balloons outward with relative sparing of basal segments)

Treatment:
- Minimise myocardial oxygen demand (treat arrhythmias promptly)
- Aspirin, nitrates, statins, beta-blocks, calcium channel blockers, ACEI
- Intra-aortic Balloon pump
Prophylaxis against Cerebral Vasospasm

- All SAH patients admitted to ICU (pre- or post-clipping) require prophylaxis against vasospasm:
 - Maintain Euvolaemia and watch for diuresis
 - Keep well hydrated and euvoaemic. ~3L/day (1.7ml/kg/h) of 0.9% saline or Plasmalyte initially prescribed and adjusted according to clinical response.
 - Osmotic diuresis common after angiography → watch for excessive hypernatremia (sNa above 145mmol/l) and treat with 5% dextrose as required.
 - Give nimodipine
 - Given to all aneurysmal SAH patients for a total of 21 days.
 - No evidence that there are any outcome differences with oral/enteral nimodipine compared with IV
 - Maintain “high normal” serum magnesium 1-1.2mmol/l
 - Maintain “high normal” serum sodium
 - Fluid restriction must not be used to treat hyponatremia even if SIADH thought to be main problem; correct hyponatremia with 0.9% saline or 3% saline after consultation.
 - Continue statin therapy
 - No prophylactic Hypervolaemia Haemodilution Hypertension therapy
Treatment of Vasospasm

• Watch for new neurological deficits
• Vasospasm most frequently seen between day 3 and 14 after SAH, and rarely before 3 days or after 18 days.
• Most common presentations:
• Transcranial Doppler can provide early warning
Early Reperfusion Therapy

• IV thrombolytic agents
• Intra-arterial thrombolysis
• Mechanical thromboembolectomy
• Ultrasound enhanced thrombolysis

Alternatives:
• Enhanced oxygen delivery
• Haemodilution
• Systemic central haemodynamic augmentation treatment
IV Thrombolysis

• Clear benefit in survival and in neurological outcomes within 3h of acute ischaemic stroke
• Still beneficial within 4.5h of ischaemic stroke in non-diabetic patients younger than 80 years
• Improved survival and neurological outcomes at 3-6 months when given within 6h of ischaemic stroke in Cochrane review of 27 controlled trials
 • Although increased early death and increased rates of intracerebral haemorrhage
Risks

• Failure to reperfuse
• Intracerebral haemorrhage
• Ischaemic reperfusion injury
• Catheterisation complications
Intra-arterial Strategies

• Best to pick patients who demonstrate mismatch between hypoperfused but salvageable brain tissue (on brain imaging) and tissue that has or is predicted to infarct

• After 4.5h of acute ischaemic stroke, or if IV thrombolysis contraindicated

• In TPA-eligible patients, results are mixed when intra-arterial strategies are used either as an alternative or as a supplement to IV thrombolysis
Prevention of Secondary Insults

• Early removal of large intracerebral haematomas
 • Evidence of improved outcomes lacking, except in epidural haematoma management as shown in a prospective cohort study

• What about decompressive craniectomy in patients who still have raised ICP despite first-tier ICU and neurosurgical management?
 • Poor outcomes at 6 months of injury by Extended Glasgow Outcome Scale

• Early detection and management of:
 • Hypoxia
 • Hypotension → Hypertonic saline not better
 • Raised ICP
 • Reduced cerebral perfusion
 • Seizures

• Pre-hospital intubation is good (as evaluated by Extended Glasgow Outcome Scale)
Autoregulation and Neuroprotection

• Cerebrovascular autoregulation= ability to maintain constant cerebral blood flow through a range of cerebral perfusion pressure

• Several dynamic pressure reactivity indices can be used (by calculating correlation between arterial blood pressure and continuous cerebral blood flow/ cerebral blood volume)
 • ICP
 • Transcranial dopplers
 • Brain tissue oxygenation
 • Spectroscopy
Transfusion threshold?

• For closed head injury (Transfusion threshold 70 vs 100) ➔ No neuro outcome differences at 6 months, but higher adverse events with higher threshold
• For SAH with high risk for vasospasm (Liberal transfusion strategy aim Hb >115 vs conservative >100): no difference in safety endpoints; more cortical infarcts in conservative group.
• In SAH patients who were transfused ➔ higher risk of PE, thrombosis and poor outcome
• Transfuse only if anaemic AND brain tissue oxygen tension (PbtO2), and not anaemia alone in TBI patients (due to poor 1 month outcomes)
Hepatic Encephalopathy

- Increases in cellular glutamine/glutamate levels \rightarrow increased circulating ammonia \rightarrow altered neurotransmitter signalling \rightarrow astrocyte swelling + microglial and mitochondrial dysfunction

- For acute liver failure:
 - Renal replacement for ammonia
 - Temperature control
 - Control inflammatory phenotype
 - Hyponatremia
 - Liver transplant

- For chronic cirrhosis:
 - Agents to drop arterial ammonia
 - Liver transplant
Temperature

• Brain temp > core temperature by 1-2 degree Celsius
• Aim temp not more than 37.5
• For Ischaemia-reperfusion injury:
 • begins within minutes to hours of injury
 • Effects last up to 72h after initial ischaemic insult
• For brain oedema: Treat for as long as it persists
• For TBI, acute ischaemic CVA with brain oedema, and acute hepatic encephalopathy:
 • Therapeutic hypothermia lowers ICP, BUT this does not lead to better outcomes
• Prolonged (4-5 days) therapeutic hypothermia has better results than TH for shorter periods associated with rebound ICP when rewarmed
• For out-of-hospital cardiac arrest: very mild hypothermia (36°C) as protective as moderate hypothermia (33°C)